Implicit Runge-Kutta Methods for Accelerated Unconstrained Convex Optimization
نویسندگان
چکیده
منابع مشابه
Accelerated Runge-Kutta Methods
Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that ...
متن کاملImplicit Runge-Kutta Methods for Orbit Propagation
Accurate and efficient orbital propagators are critical for space situational awareness because they drive uncertainty propagation which is necessary for tracking, conjunction analysis, and maneuver detection. We have developed an adaptive, implicit Runge-Kuttabased method for orbit propagation that is superior to existing explicit methods, even before the algorithm is potentially parallelized....
متن کاملImplicit Runge-kutta Methods for Uncertainty Propagation
Accurate and efficient orbital propagators are critical for space situational awareness because they drive uncertainty propagation which is necessary for tracking, conjunction analysis, and maneuver detection. Existing sigma pointor particle-based methods for uncertainty propagation use explicit numerical integrators for propagating the closely spaced orbital states as part of the prediction st...
متن کاملPreconditioning of implicit Runge-Kutta methods
A major problem in obtaining an efficient implementation of fully implicit RungeKutta (IRK) methods applied to systems of differential equations is to solve the underlying systems of nonlinear equations. Their solution is usually obtained by application of modified Newton iterations with an approximate Jacobian matrix. The systems of linear equations of the modified Newton method can actually b...
متن کاملValidated Explicit and Implicit Runge-Kutta Methods∗†
A set of validated numerical integration methods based on explicit and implicit Runge-Kutta schemes is presented to solve, in a guaranteed way, initial value problems of ordinary differential equations. Runge-Kutta methods are well-known to have strong stability properties, which make them appealing to be the basis of validated numerical integration methods. A new approach to bound the local tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2967064